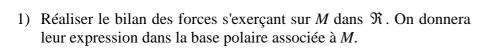
Contrôle continu de mécanique


L'usage des calculatrices est interdit.

(durée: 30 minutes)

NOM:	Prénom:	Groupe:	Note (/20):

De nombreuses questions sont indépendantes. TOUTES les justifications nécessaires seront prises en compte : soyez précis dans vos notations.

Dans le référentiel terrestre local $\Re = (O, xyz)$, supposé galiléen, on considère un pendule constitué par un fil inextensible et sans masse, de longueur $OM = \ell$. Au point M est fixée une masse ponctuelle m. On note φ l'angle d'inclinaison de \overrightarrow{OM} par rapport à $\overrightarrow{e_z}$, qui représente la verticale descendante (Figure). Pour tout l'exercice, on considère les petits mouvements, c'est-à-dire, $\varphi \to 0$.

b) En déduire l'équation du mouvement.

c) Que peut-on également déterminer ? Conclure.

3) a) Enoncer le théorème du moment cinétique, et l'appliquer à M dans \Re .

	b)	En déduire l'équation du mouvement.
	c)	Quelle est la différence avec la méthode précédente ?
4)		Sthode énergétique : Déterminer l'énergie cinétique de M dans \Re .
	b)	Qu'est ce qu'une force conservative ? Quelle(s) est (sont) la (les) force(s) conservative(s) dans cet exercice ?
	c)	Déterminer l'énergie potentielle, puis l'énergie mécanique, de M dans \Re .
	d)	Calculer le travail des forces non conservatives.
	e)	Enoncer le théorème de la puissance mécanique, et l'appliquer à M dans \Re . Préciser la période du mouvement et conclure.